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1. AFDEX V24R02 Update and Heat

Treatment Module Release

In October 2025, the final update of AFDEX_V24R02
and the Heat Treatment Module were officially released.
Since the launch of the new version in June, a series of
user-oriented functional enhancements have been
implemented. The heat treatment and microstructure
analysis module has completed two years of beta testing
and is now fully released.

The microstructure prediction program includes
capabilities for predicting dynamic recrystallization
(DRX), static recrystallization (SRX), and grain growth.
The heat treatment program provides new functions
covering hardness prediction, annealing, quenching,
tempering, and spheroidization. With the release of the
latest AFDEX version, users can now perform more
comprehensive analyses of both macroscopic and
microscopic material characteristics throughout the
forming and post-processing stages.

2. AFDEX Simulation Cases
2.1 Anisotropy Modeling

The AFDEX research team has developed an
anisotropic elastoplastic finite element analysis program,
which was presented at ICPMMT 2025. Figure 2.1 shows
the results of an anisotropic elastoplastic finite element
analysis of a circular cup deep drawing process using a
tetrahedral mesh. The anisotropic elastoplastic analysis
capability is scheduled to be available starting from the
second quarter of 2026.

Figure 2.1 Anisotropic elastoplastic finite element
analysis using a tetrahedral mesh

2.2 Damage Constant and Critical Damage

The AFDEX research team has developed a practical
simultaneous identification method for determining the
damage constant and critical damage value based on two
experimental tests. This methodology was published in
the journal (B. S. Hong et al., Metals 2025, 15, 1376).
Figure 2.2 presents a simulation case of the fracture
behavior of an energy absorption device. In this example,

the Oyane-Okimoto—Shima damage model (D = [ (1 +

c %’“) dé) was applied, and the damage constant C = 0.82

and the critical damage value D=1.29 were identified.
When these values are used, the simulation results provide
predictions that simultaneously satisfy both the tensile test
and the energy absorption test from an engineering
standpoint.
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Figure 2.2 Impact test simulation of an energy absorption
device

2.3 Fillet Rolling: High-accuracy, Cost-efficient
Analysis Modeling

In 2025, extensive research was conducted on the
analysis techniques for the fillet rolling process of high-
performance bolts, leading to the proposal of various
simulation models. Approaches such as optimized load
application methods and the use of geometric symmetry
were introduced to enhance numerical stability and
computational efficiency. Figure 2.3(a) shows a full-
domain finite element analysis model of the fillet rolling
process for a titanium bolt, while Figure 2.3(b) compares
the simulation results with experimental measurements.
Figure 2.3(c) presents the stress cycles experienced at
critical locations during fatigue testing. The results
indicate that fillet rolling significantly reduces both the
mean value of the maximum principal stress from 730
MPa to 200 MPa and its stress amplitude from 400 MPa
to 200 MPa. This reduction leads to a substantial
improvement in the fatigue life of the bolt. The major
research outcomes were published in J. Manufact. Process.
(V. 151, 2025, 490-505) and J. Mater. Res. Technol. (V.
37,2025, 3788-3800).
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Figure 2.3 Fillet rolling process analysis

2.4 Flow Curve Identification Using Elastoplastic
FEM

AFDEX MAT provides flow curves based on the rigid—
plastic finite element method, which can accurately
predict tensile tests from an engineering perspective.
However, when these flow curves are applied to tensile
simulations using the elastoplastic finite element method,
noticeable discrepancies from experimental results may
occur. Recently, the use of elastoplastic finite element
analysis has been increasing, particularly for sheet metal
forming and sheet or plate forging simulations, where
elastic effects play a critical role.

To address this issue, the AFDEX research team
developed a practical flow curve identification method
using the elastoplastic finite element method, which
improves flow curves originally obtained from rigid—
plastic analysis. This approach leverages the key
advantage of the rigid—plastic method, namely the stable
acquisition of the initial flow curve. Figure 2.4(a)
compares flow curves obtained using rigid—plastic and
elastoplastic finite element methods. Figure 2.4(b)



compares the tensile test curve predicted using the
elastoplastic-based flow curve with experimental results,
showing excellent agreement.
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Figure 2.4 Flow curve identification using elastoplastic
FEM
2.5

Standard Tensile Properties from

Conventional Tensile Tests

Despite standardized tensile testing procedures, two
distinct different standards exist, and in practice, these
standards are often not strictly followed. As a result, it is
difficult to secure consistent and standardized tensile test
data, highlighting the need for reliable data normalization
and accumulation. To address this issue, an analytical
elongation calibration function was developed, and its
effectiveness was numerically validated (Kim et al., 2025,
Mater. & Des., 113851).
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(b) Comparison of numerical and analytical results for
standardized tensile tests with GLPD = 5
Figure 2.5 Scientific and data-driven standardization of
tensile testing

By applying this elongation calibration function, which
acts as a mapping function, nominal stress—strain curves
obtained from non-unified tensile specimens with varying
gauge length-to-diameter ratios (GLPD, Figure 2.5(a)), as
shown in can be converted into a unified standard tensile
curve with GLPD = 5 (Figure 2.5(b)). According to the
analysis results, the error introduced by this
transformation is negligible.

2.6 Flow Curve Identification from Tube
Materials

To identify the flow curve of tube materials, several
researchers have applied tensile testing on sheet metal or
conducted tensile testing on tube using a snug-fitting plug.
The AFDEX research team leveraged the high accuracy
of the snug-fitting plug approach and developed a flow
curve identification method that integrates finite element
analysis with tube tensile testing (B. S. Hong et al., Int. J.
Adv. Manufact. Technol., V. 141, 2025, 5373-5388). As
shown in Figure 2.6(a), the finite element model consists
of multiple bodies. An optimal flow curve was obtained
by iteratively minimizing the discrepancy between the
predicted load—displacement curve, based on the current
flow function, and the experimental curve.
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Figure 2.6 Flow curve identification for tube materials

Figure 2.6(b) highlights the favorable convergence
characteristics of the proposed method. Although the
tensile curve predicted using the initially assumed flow
curve (Prediction 1) exhibits a large deviation from the
experimental curve (identical to Prediction 3), a single
iterative update produces a prediction (Prediction 2) that
closely approaches the experimental result. After two
optimization iterations, the tensile curve predicted using
the final flow curve (Prediction 3) agrees with the
experimental curve within an error of 0.16%. This
material exhibits a high strain-hardening capability,
resulting in rapid convergence. For materials with lower
strain-hardening behavior, however, a larger number of
iterations may be required.

2.7 Flow Curve and Friction

Friction is an inherently complex phenomenon. Most
studies on friction consistently emphasize its strong
dependence on factors such as contact pressure,
temperature, sliding speed, surface expansion ratio,
relative velocity, material properties, and lubricant type
and condition. Nevertheless, in practical process
simulations, many researchers still rely on simplified
friction laws using a constant friction coefficient or
friction factor. There are two main reasons for this
practice. First, forging simulation technologies have
traditionally focused on macroscopic phenomena,
particularly the final shape of forged products, rather than
high-precision analysis or accurate load prediction.

Second, the primary target materials have often been
steels and other materials with high strain-hardening
capacity, in which the influence of friction tends to be
secondary.

In particular, many researchers remain dependent on
the constant shear friction law. Wilson (W. R. D. Wilson,
Friction and lubrication in bulk metal-forming processes,
Journal of Applied Metalworking, Vol. 1, 1978, pp. 7-19)
offered a critical and somewhat cynical perspective on this
tendency, attributing it to shortcomings in early
engineering education. He suggested that friction
concepts derived from threaded fastener mechanics were
inappropriately applied to metal forming problems,
despite the fundamentally different nature of friction in
these two contexts.

For materials with low strain-hardening capacity, such
as aluminum alloys or ESW materials, friction plays a
much more dominant role in the forming process. This
effect is further amplified when thickness reduction varies
spatially or when significant shape changes occur
depending on the material flow direction, as in forward—
backward extrusion processes.

The selected application case is a forward—backward
extrusion process in which achieving the desired
deformation shape is particularly challenging. Figure 2.7
presents the friction conditions required to accurately
predict the optimal deformation shape shown in Fig. 8.
Meaningful shape prediction is not possible when using a
constant friction factor or coefficient.
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Figure 2.8 Comparison between experimental and
simulation results

The friction coefficient function shown in Figure 2.7
exhibits a typical lubrication regime change, in which the
friction coefficient increases abruptly once the interfacial
material reaches a certain level of strain. This
phenomenon is highly likely to occur during cold and hot
forging of low strain-hardening materials such as
aluminum.
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Figure 2.9 Cases requiring consideration of lubrication
regime change

Figure 2.9 compares simulation and experimental
results for forward—backward extrusion processes of steel
and aluminum under identical conditions except for the
friction conditions. Notably, the predictions were obtained
using the optimized friction coefficient function of
effective strain exhibiting the lubrication regime change.
The simulations using various conventional friction
coefficients demonstrated that neither the Coulomb
friction law nor the constant shear friction law can
reproduce the experimental outcomes. In other words,
predictions based on conventional friction laws show
clear discrepancies from experimental results, particularly
in terms of final shape.

2.8 Flow Behavior of Carbon Steel at Room
Temperature

Among carbon steels, S10C, S20C, and S45C are
widely used for cold forging applications. These three
materials were subjected to heat treatment under identical
conditions for cold forging, followed by carefully
controlled tensile tests conducted by a NADCAP-
accredited testing laboratory (Tesco). Figure 2.10(a)
shows the tensile test results, while Figure 2.10(b)
presents the flow curves obtained using AFDEX MAT.
For this purpose, a generalized Hollomon model was
adopted, in which the strength coefficient is treated as a
function of effective strain, referred to as a strength
coefficient function.
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(c) Flow curve of an arbitrary carbon steel
Figure 2.10 Tensile test results and flow curves of carbon
steels

The analysis revealed that the key flow behavior
parameters can be expressed as functions of carbon
content. Based on this observation, the flow function was
formulated explicitly as a function of carbon content. As
shown in Figure 2.10(c), this formulation enables the
derivation of a flow curve for an arbitrary carbon steel
composition.

2.9 Multi-Stage Roll Flow Forming

Flow forming, including spinning and roll forming, is a
type of incremental metal forming process in which
rotating rollers are used to form products of various shapes,
such as sheet metals, hollow cylinders, and conical
geometries.

In the example process, two additional rollers with
different geometries (Roll 2 and Roll 3) were introduced
in addition to the initial roller pair (Roll 1-1 and Roll 1-2).
The material thickness is progressively reduced through a
total of three forming stages. Figure 2.11(a) shows the 360°
finite element model used in the analysis.

During the simulation, Roll 1-1 and Roll 1-2 operate
simultaneously, followed by sequential forming by Roll 2
and Roll 3. Figure 2.11(b) presents the final simulation
result for a virtual automotive wheel flow forming process.
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Figure 2.11 Multi-stage flow forming analysis of a virtual
automotive wheel

2.10 Enhanced Sheet Metal Forming Analysis

To demonstrate the enhanced sheet metal forming
capabilities of AFDEX, a simulation case of a stamping
process for a cathode current collector component used in
lithium-ion batteries is presented. The material employed
was a 2.0 mm-thick aluminum A1050-H18 sheet. The
process and die were designed to be compatible with a
250-ton mechanical press and consisted of a total of eight
forming stages.

Figure 2.12(a) illustrates the deformation history at
each stage, while Figure 2.12(b) compares the predicted
shape with the experimental result.
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(a) Deformation history from Stage 1 to Stage 8

Prediction

Experimental

(b) Comparison of simulation and experimental results
Figure 2.12 Sheet metal forming analysis of a current
collector component

2.11 Heat Treatment Analysis

Using the AFDEX 2D/3D heat treatment module, major
processes such as annealing, quenching (Figure 2.13(a)),
tempering, quenching and tempering (QT, Figure 2.13(b)),
and spheroidization (Figure 2.13(c)) can be analyzed.
Users can define flexible heat treatment cycles by
controlling time, temperature, and convective heat
transfer coefficients. By selectively activating relevant
phenomena, microstructural evolution during each cycle
can be accurately tracked. Hardness is calculated based on
grain size and phase fraction data using the Hall-Petch
relationship.
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(a) Jominy end-quench test of AISI 52100 according to
ASTM A255
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(c) Spheroidizing heat treatment
Figure 2.13 Heat treatment simulations

2.12 Surface Expansion Ratio Visualization

For each location on the material surface, the surface
expansion ratio can be visualized in the post-processing
module, as shown in Figure 2.14. This parameter is
directly related to changes in friction conditions during
metal forming and therefore plays a critical role in
achieving more realistic friction modeling. In addition, a
new friction coefficient function that incorporates a
weighting function based on the surface expansion ratio is
currently supported.
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Figure 2.14 Surface expansion ratio visualization in 3D

2.13 Improved Material-to-Material Contact

This section presents application examples of the
improved  material-to-material  contact  algorithm
introduced in AFDEX V24R02. Figure 2.15(a) shows the
configuration before analysis. In previous versions,
interference issues occurred between materials in contact
with the die, as illustrated in Figure 2.15(b). In
AFDEX V24R02, as shown in Figure 2.15(c), material
penetration along the contact surfaces is effectively
prevented, resulting in simulation results that are much
closer to actual behavior.

(a) Initial configuration  (b) Previous prediction
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Figure 2.15 Continuous self-contact behavior between
materials

3. Key User Interface Improvements
3.1 Extreme Mesh Generation for Dies

Figure 3.1(a) shows the die mesh for a single-die
configuration, consisting of approximately 7.2 million
tetrahedral elements. When a larger number of elements
was specified, mesh generation failed due to memory
limitations; however, a higher number of elements can be
generated depending on the performance of the user’s PC.
Figure 3.1(b) presents a multi-die case composed of 10 die
components, where each die component was discretized
into 2 million tetrahedral elements.

(a) Single die

(b) Multiple dies
Figure 3.1 Verification of extreme mesh generation for
dies

3.2 HDFS5 Format Export

An export function supporting the HDF5 format has
been added. This feature enhances interoperability by
enabling simulation results to be efficiently linked with
external tools. Figure 3.2 shows the HDF5 export dialog
and the extracted result data.
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Figure 3.2 HDF5 export functionality

3.3 Forming Limit Curve (FLC) Input

In previous versions, Forming Limit Curve (FLC) data
had to be defined during preprocessing in order to evaluate
Forming Limit Diagram (FLD) results.
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Figure 3.3 FLC input interface in post-processing
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In the latest version, FLC data can be entered directly
in the post-processing stage, eliminating the need to rerun
simulations when FLC data are modified. Figure 3.3
shows the FLC input interface in the post-processor.

3.4 STL Model Overlay in Post-Processing

To support result verification and comparison, a
function has been added that allows the predicted material
shape to be overlaid with the original CAD model (STL).
Figure 3.4 shows an application example at the final

simulation step.
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Figure 3.4 Comparison between STL model and
simulation result at the final step

3.5 3D Piercing/Trimming Ul

To reduce user errors during piercing or trimming setup,
reference images have been added to the analysis
condition input dialog, as shown in Figure 3.5. In addition,
an issue in which simulations occasionally terminated
without executing piercing or trimming operations has
been resolved.
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Figure 3.5 Piercing / trimming condition input dialog

3.6 Material-to-Material Friction for Single-
Body Analysis

In previous versions, when material-to-material contact
occurred in single-body analyses, friction conditions at the
contact interface were internally assumed by the solver.
Starting from AFDEX_ V24R02, users can explicitly
define material-to-material friction conditions not only for
multi-body analyses but also for single-body analyses.
Figure 3.6 shows the interface for specifying inter-object
friction conditions and friction coefficients.
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Figure 3.6 Material-to-material friction input dialog
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3.7 Updated Default 2D Auto-Mesh Settings

AFDEX automatically configures analysis conditions
to enhance usability. In the process information dialog,
users can select Fast, Normal, or Accurate modes to
balance computation speed and accuracy. Based on this
selection, the number of elements and simulation steps are
automatically determined. From AFDEX V24R02, these
default values have been increased by approximately 1.5
times compared to previous versions to improve solution
accuracy.

3.8 Metal Flow Line Visualization

n previous versions, metal flow line visualization
became inconvenient when the initial billet orientation
was not aligned with the global x-, y-, or z-axes. In
AFDEX V24R02, an automatic center-axis detection
function has been implemented. As a result, metal flow
lines can now be visualized consistently regardless of the
initial material orientation, as shown in Figure 3.7.




(a) Before improvement (b) After improvement
Figure 3.7 Improved metal flow line visualization

3.9 Heat Treatment Module GUI

Based on feedback collected during beta testing of the
AFDEX heat treatment module, several usability
improvements have been implemented in the
preprocessing stage. For example, sample heat treatment
processes are now provided when creating a new project,
enhancing user convenience (Figure 3.8(a)). The heat
treatment dialog allows users to visualize heat treatment
cycles in chart form (Figure 3.8(b)). In the cycle dialog,
users can define analysis steps, solver options, and heat
transfer boundary conditions for each cycle (Figure
3.8(c)).
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(c) Heat treatment cycle information dialog
Figure 3.8 Improved usability of the heat treatment
module

3.10 2D DXF Import

In previous versions, shape recognition errors could
occur when importing CAD data created using blocks.
Starting from AFDEX_ V26R01, models constructed with
blocks can now be imported correctly. In addition, models
created by inserting or copying and pasting blocks from
other files are also fully supported.

3.11 Perspective Control in AFDEX_SP

Earlier versions provided only basic perspective
adjustment. In response to user feedback, the latest

version significantly improves usability and control of
perspective settings. Figure 3.9 shows the perspective
control dialog and application examples. This function
allows users to apply realistic perspective effects when
comparing photographs of forged products with
simulation results, thereby enhancing visual realism and
interpretability.

(a) Forged product

(b) Simulation result with perspective applied

(c) Simulation result without perspective applied
Figure 3.9 Application example of perspective control

3.12 License Manager

From AFDEX V24RO01, the licensing system was
transitioned to a network-based license. However, an
issue existed where the license manager did not
automatically start after rebooting the server PC. To
resolve this, the license manager has been converted into
a service application, and starting from AFDEX V24R02,
the server license manager has been separated from the
client installation. As a result, the AFDEX license
manager must be installed on the server PC, while client
PCs can access licenses by entering the server IP address
and port number.
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4.2 ICFG 58™ Meeting

MEFRC attended the 58th General Assembly of the
International Cold Forging Group (ICFG) held in
Valenciennes, France, from September 15 to 17, and
officially became a member of this international forum.

Figure 4.2 58" ICFG meeting

4.3 Workshops in Tiirkiye

MEFRC, together with its Turkish partner Simultura
Malzeme Teknolojileri, conducted a metal forming
workshop in collaboration with the METAT team at Gazi
University. In addition, MFRC held a heat treatment and
microstructure workshop with the Metallurgy and
Materials community at METU.

Figure 4.4 METU Workshop

4.4 Networking with Overseas Customers and
Partners

Throughout 2025, MFRC has continuously
strengthened collaboration with overseas partners and
newly established customers. In particular, the company
has actively expanded technical support activities to
promptly resolve customer-specific technical issues and
enhance the efficiency of AFDEX utilization. MFRC has
also participated in several Altair AI+CAE technology
events held across the APAC region, including Korea,
Japan, Indonesia, Taiwan, and Malaysia.



WELCOME TO THE
ALTAIR TECHNOLOGY DAY
INDC SIA 2025

(c) Altair Technology Conference Japan 2025

. < e o Sl ) E - =
(d) Altair Technology Conference Malaysia 2025
Figure 4.5 Altair AI+CAE Technology Events

4.5 MetalForm China 2025

MEFRC participated in MetalForm China 2025, the
largest metal forming exhibition in Asia, held in Shanghai,
China, from June 17 to 20, 2025.

The AFDEX team received an Outstanding Exhibitor
Award at the event.

4.6 Selected as a Korean Government—
Designated Global Growth Company

In April 2025, MFRC was designated as a Korean

government-recognized Global Growth Company under

the Global Small Giant 1000+ program of the Ministry of

SMEs and Startups. This recognition reflects strong

evaluation of MFRC’s proprietary CAE software

development capabilities, continuous technological
innovation, and high growth potential in global markets.
Through this designation, MFRC will receive

government support for overseas expansion, research and
development (R&D), and marketing activities, which will
further strengthen its global competitiveness.

Going forward, MFRC will continue striving to deliver
greater value to customers worldwide as a leading
provider of metal forming process simulation solutions.




